重力場和因電磁感應而產生的電場類似,其存在只有相對的意義。因為對於一名從屋頂自由落下的觀測者而言,至少在他的附近,重力場並不存在。──愛因斯坦
黎曼幾何裡的寶藏
愛因斯坦以一個二階張量來描述質量分布,此二階張量是一個四乘四的對稱矩陣,包含了 10 個分量,速度、動量等等項目都能含括進去,才能完整的描述質量分布。牛頓古典力學中,質量分布是重力場 (位能) 二次微分的結果,所以愛因斯坦希望能找到另一個 (也必須是二階) 張量,其二次微分可以得到描述質量分佈的張量,此外又符合某種廣義的勞倫茲轉換。
他找了自己的大學同學格羅斯曼(Marcel Grossmann)幫忙,格羅斯曼的研究專長是黎曼幾何。如之前所說,黎曼幾何的一大特點便是度量與座標無關,建立在稱為「度規張量」的基礎上。因此,如果能從黎曼幾何中找到符合所需的張量,或許就能完成愛因斯坦想要的「不隨座標改變的重力方程式」。
你一定要幫我,不然我要瘋了!──愛因斯坦給格羅斯曼的信
格羅斯曼翻閱圖書館的資料後,發現在黎曼幾何中有一個「里奇曲率張量」(Ricci curvature tensor),剛好符合愛因斯坦的需求。於是愛因斯坦把它納入方程式,於 1912、1913 年和格羅斯曼共同發表,並試著以這個方程式解決當時困擾科學家許久的「水星近日點進動之謎」。
行星是以橢圓軌道在繞行太陽的,太陽就位於橢圓軌道的其中一個焦點,而軌道上最靠近這個焦點的位置,就是行星的近日點。不過行星的軌道並非完全穩定的,軌道本身也會慢慢的旋轉,也就是近日點的位置會一點點的改變,每一次行星繞到近日點時,位置都會和上一次有些許不同,稱為「進動」。
相較於多數行星的進動幅度都在每一百年 10 角秒以內,水星的近日點進動的幅度多達每一百年 43 角秒,牛頓所發展出的天體運動學一直無法解釋這個現象。
水星進動說明影片
「當時的重力方程式雖然還沒有完整,但已經可以解決水星近日點進動之謎。」鄭日新繼續說故事:「不過,愛因斯坦當時並沒有成功解釋,可能是……他算錯了。」
總之,愛因斯坦的方程式還未完整,旅程還沒有結束。
重力方程式的最後一塊拼圖
原來,雖然找到了里奇曲率張量,但它可能只是用來描述重力場的方程式的最高項而已。後面應該還要加上其他項,才能讓方程式完整。
1915 年,愛因斯坦受邀到哥廷根科學院演講,邀請他的是一位幾何學專家希爾伯特(David Hilbert),在那次見面交流的過程中,希爾伯特得知了愛因斯坦正在推導重力方程式。接下來,希爾伯特也投入了尋找重力方程式的工作,並在一次信件往返中,向愛因斯坦提出可以利用變分方法及最小作用量原理,來推導出完整的重力方程式。