在大數據時代,我們已然可以利用無處不在的數據來預測商業需求。Lattice Engines 正是利用各種管道公布的資訊來預測商業需求,並根據這類數據為企業推薦合適的供應商,我們可稱之為企業級的推薦引擎。
其實,在數據的使用方法上,針對企業的預測分析與針對消費者個人的預測分析,在本質上是一樣的,但企業預測分析要收集的數據來源更多、更廣,並且需要高度的產業專業性。我們可以肯定地說,數據無處不在,身在傳統產業也需要多留意數據。我相信,再過十年,不用大數據的企業將追悔莫及。
企業「用」數據的三大竅門
用數據這門學問就像武功,台上一分鐘,台下十年功。行情好的時候不養數據,市場差的時候就更難臨時抱佛腳。
平日養數據大有好處,這些數據不僅可能成為企業戰略分析的關鍵,而且對某個關鍵數據盲點的突破,有可能成為企業的必殺技。這裡,我就跟大家分享企業用數據的三個竅門:
方法1—AAR 原則鎖定客戶
首先,企業應該確定,誰是你的目標客戶,透過哪些管道可以找到這些人;當這些客戶進來後,他們的成長軌跡是怎樣的;這些客戶對你是否滿意,他們是否會離開。這就是我經常使用的AAR 原則:
第一個A 是acquire(獲取)—如何用最有效的方法獲取核心客戶。
第二個A 是activate(活躍)—如何讓獲取的客戶快速成長,變得活躍、有黏性。
R 即retention(保留)—如何防範核心客戶流失。
數據可以貫徹這三個階段的始終,既可以幫你找出核心客戶,也可以告訴你什麼服務和價格能讓他們變成忠誠客戶,同時還可以用數據模型預測客戶未來的需求,甚至是他們離開的機率。當企業充分掌握客戶當前狀態的數據之後,就可據此進行預測,發現問題馬上糾正,這就是懂得用數據的企業所做的事情。
例如,當你發放折價券時,是否想過,什麼時候應該讓客戶當次使用,什麼時候要留待下次使用?企業亂發折價券或經常打折,不但太博愛,還會讓客戶養成「無折不買」的習慣。
方法2—行為數據比結果數據更有價值
企業一般關注的重點是交易數據,比如一天有多少客流量、多少交易額,卻忽略了這些交易背後的原因。當把客戶的行為數據(交互行為)和交易數據相互關聯時,企業才會知道用什麼產品吸引什麼客戶最有效、什麼價格能讓這些客戶活躍起來、怎樣能讓他們對這個平台更感興趣,我們甚至可以預測到客戶流失的蛛絲馬跡。
客戶的行為數據不一定能產生交易,但可以讓我們更了解他,讓我們知道他為什麼會買,或者為什麼不會買。透過行為數據去發現客戶如何做決策,是個重要課題,即使是負面數據也可能有正面作用。