為什麼要做「法律實證研究」?「法律實證研究」是用社會科學的實證研究方法,把抽象的法律規範,放在具體的社會情境中來觀察、理解。透過大量的數據資料、配合統計分析,可以建立各種可預測的模型。對於法律理論的建構與驗證、或是法律制度的改革與優化,都提供了堅實的基礎。
痛苦一斤多少錢?
買水果時,我們會看標價。蘋果三顆一百、橘子一斤三十,諸如此類。但當你受傷的時候,若要幫你的「痛苦」標個價,你知道該開多少嗎?頭腫了五千、手骨折三萬,是否存在類似這樣的「公定價」?這是每位審理民事案件的法官,天天都得面對的課題。
法官必須為血肉之軀的苦難,貼上金錢標價。
人的痛苦非常主觀、難以量化,但在許多侵權求償的案件中,法官卻必須依照「痛苦程度」,來判決適當數額的「慰撫金」。別說法官頭痛了,要幫原告打官司的律師,該幫當事人請求多少賠償,也是一樣找不到明確的標準來遵循。
中研院法律所張永健研究員的研究領域,就正好是這個棘手問題的最佳解藥。他用最拿手的統計方法,分析了 2008 至 2012 年數百件車禍與醫療糾紛的案件,以實證科學研究,解開了法院的「慰撫金額方程式」。
解開「慰撫金額方程式」
慰撫金註定是個沒有「標準答案」的問題。張永健表示,早從半個多世紀前開始,最高法院就有判例,企圖界定出慰撫金額的衡量標準,像是加害情形、雙方身分地位、經濟情形、被害人痛苦程度等等。但說來說去,仍然十分抽象模糊,找不出一個可遵循可參考的依據。這引發了他的研究興趣,他相信判決縱然是主觀的,但仍然會存在某些相對客觀的原則。
法官不是神,所受的訓練也不是為了讓他們一眼看穿人的痛苦。
於是,張永健從判決書中抽絲剝繭,把複雜的案件事實化約為各項變數,接著運用統計方法的「多元迴歸模型分析」,終於找出跟慰撫金數額最為相關的兩個因素:「被害人受傷程度」與「醫療費用」。
此外,張永健也驗證了經濟學上著名的「定錨效應」。他發現,原告請求的賠償金額,就像是幫法官放下了一個「錨點」,其後的判決,會以這個錨點為基準,進行上下修正。因此,最初請求的金額越高,最後判決金額也會相對應的提高。
這些研究的結論,大大地提高了慰撫金的可預測性。未來可以用這些變項,來建立一套預測模式,甚至設計出賠償金額試算的 APP ,只要輸入相對應的數值,就可以知道慰撫金大概會落在哪個區間。
這套模式若真能落實,不只將能減輕法官的負擔,也讓打官司的兩造,在瞭解「行情」之後,增加和解的可能性,避免不必要的爭訟或上訴,讓已經拉警報的司法資源,可以獲得不小的紓解。