但是以上的論述中都只討論到錯誤的機率,並沒有討論到各種不同的場景的後果,這裡我們要引入剛才定義的「1%問題」,來檢視現有機器學習式的人工智慧系統一個很大的陷阱。
場景一:傳統保全
傳統保全使用人類實況監看保全攝影系統,電影或電視影集中也常常出現這樣的場景:兩三個穿著警衛或警察制服的人盯著十幾個分割螢幕,結果一聊天分心,讓正義的夥伴或者變態殺人狂成功避過監視進入保全區域。
保全不可能做到100%毫無疏漏,因此這門生意本來就是機率問題。聘用更多人監看電視就可以降低疏漏率,但是邊際效用下降,成本上升。在保戶能夠接受的費用範圍內,保全用戶和保全公司在合約的框架下接受一定的總體疏漏機率,在上面追加同樣是機率問題的保險制度和再保制度,從而得到一個可行的生意模式。
如果使用影像辨識系統來取代坐在螢幕前監看的人類,成本多半可以降低,而且疏漏率更是遠比會打瞌睡和偷懶的人類低。因此保全用戶可以享受更高的安全,保全公司也有機會賺到更多的錢,儘管疏漏率仍然不會降到0%。
這是一個真正有用的機器學習應用場景。
場景二:行事曆自動排程
我們風險資本家的每天的日常就是一場接著一場的會議,但是不同於企業內部會議只要排時間,我們的會議是四散在各地,中間穿雜著各種電話會議,外加大量的外地出差,這表示跟會議對象確認會議時間排進行事曆是一個非常耗時的事情,郵件一來一回可能花兩天都還排不好一場會議。
傳統的解決方案是聘用秘書或者助理,好的秘書或者助理會根據會議重要性、敏感性、時區、合夥人飛行狀況、班機延誤風險⋯⋯等各種因素,來和對方進行適當的會議時間、地點和方式協商。
當然這樣等級的秘書或者助理很貴,不是大家都負擔得起的,我自己常常遇到會議對象的秘書其實都不那麼專業(也就是不那麼貴),把事情搞砸的次數也不算少。我們自己Hardware Club因為旗下管理基金總規模還不大,所以並沒有特別編列聘用秘書或助理的預算,大多是合夥人自己排程,也因此在巴黎辦公室,很多時候晚上公司年輕同仁們都下班了,卻還看得到合夥人在這較不花大腦的時段回著郵件,排著下趟出差的會議。
因此我可以理解當年多家知名風險管理公司們——包含DCM Ventures、FirstMark Capital、Two Sigma Ventures和願景基金成立之前的軟銀資本(Softbank Capital)等——進行投資並大肆吹捧x.ai這間位於紐約的新創。
x.ai使用機器學習,用電腦秘書自動分析來信內容,並以自然語言回信請求安排會議,然後根據對方回應的文字內容(時間衝突、地點衝突、時區錯誤⋯⋯等)進行新的時間和地點提案,最後成功達成共識後就自動登錄進使用者的行事曆。